skip to main content


Search for: All records

Creators/Authors contains: "van ‘t Hoff, Merel L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The water snowline in circumstellar disks is a crucial component in planet formation, but direct observational constraints on its location remain sparse owing to the difficulty of observing water in both young embedded and mature protoplanetary disks. Chemical imaging provides an alternative route to locate the snowline, and HCO + isotopologues have been shown to be good tracers in protostellar envelopes and Herbig disks. Here we present ∼0.″5 resolution (∼35 au radius) Atacama Large Millimeter/submillimeter Array (ALMA) observations of HCO + J = 4 − 3 and H 13 CO + J = 3 − 2 toward the young (Class 0/I) disk L1527 IRS. Using a source-specific physical model with the midplane snowline at 3.4 au and a small chemical network, we are able to reproduce the HCO + and H 13 CO + emission, but for HCO + only when the cosmic-ray ionization rate is lowered to 10 −18 s −1 . Even though the observations are not sensitive to the expected HCO + abundance drop across the snowline, the reduction in HCO + above the snow surface and the global temperature structure allow us to constrain a snowline location between 1.8 and 4.1 au. Deep observations are required to eliminate the envelope contribution to the emission and to derive more stringent constraints on the snowline location. Locating the snowline in young disks directly with observations of H 2 O isotopologues may therefore still be an alternative option. With a direct snowline measurement, HCO + will be able to provide constraints on the ionization rate. 
    more » « less
  2. Abstract Constraining the physical and chemical structure of young embedded disks is crucial for understanding the earliest stages of planet formation. As part of the Early Planet Formation in Embedded Disks Atacama Large Millimeter/submillimeter Array Large Program, we present high spatial resolution (∼0.″1 or ∼15 au) observations of the 1.3 mm continuum and 13 CO J = 2–1, C 18 O J = 2–1, and SO J N = 6 5 –5 4 molecular lines toward the disk around the Class I protostar L1489 IRS. The continuum emission shows a ring-like structure at 56 au from the central protostar and tenuous, optically thin emission extending beyond ∼300 au. The 13 CO emission traces the warm disk surface, while the C 18 O emission originates from near the disk midplane. The coincidence of the radial emission peak of C 18 O with the dust ring may indicate a gap-ring structure in the gaseous disk as well. The SO emission shows a highly complex distribution, including a compact, prominent component at ≲30 au, which is likely to originate from thermally sublimated SO molecules. The compact SO emission also shows a velocity gradient along a direction tilted slightly (∼15°) with respect to the major axis of the dust disk, which we interpret as an inner warped disk in addition to the warp around ∼200 au suggested by previous work. These warped structures may be formed by a planet or companion with an inclined orbit, or by a gradual change in the angular momentum axis during gas infall. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  3. Abstract We present an overview of the Large Program, “Early Planet Formation in Embedded Disks (eDisk),” conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The ubiquitous detections of substructures, particularly rings and gaps, in protoplanetary disks around T Tauri stars raise the possibility that at least some planet formation may have already started during the embedded stages of star formation. In order to address exactly how and when planet formation is initiated, the program focuses on searching for substructures in disks around 12 Class 0 and 7 Class I protostars in nearby (<200 pc) star-forming regions through 1.3 mm continuum observations at a resolution of ∼7 au (0.″04). The initial results show that the continuum emission, mostly arising from dust disks around the sample protostars, has relatively few distinctive substructures, such as rings and spirals, in marked contrast to Class II disks. The dramatic difference may suggest that substructures quickly develop in disks when the systems evolve from protostars to Class II sources, or alternatively that high optical depth of the continuum emission could obscure internal structures. Kinematic information obtained through CO isotopologue lines and other lines reveals the presence of Keplerian disks around protostars, providing us with crucial physical parameters, in particular, the dynamical mass of the central protostars. We describe the background of the eDisk program, the sample selection and their ALMA observations, and the data reduction, and we also highlight representative first-look results. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  4. Abstract The water snowline location in protostellar envelopes provides crucial information about the thermal structure and the mass accretion process as it can inform about the occurrence of recent (≲1000 yr) accretion bursts. In addition, the ability to image water emission makes these sources excellent laboratories to test indirect snowline tracers such as H 13 CO + . We study the water snowline in five protostellar envelopes in Perseus using a suite of molecular-line observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) at ∼0.″2−0.″7 (60–210 au) resolution. B1-c provides a textbook example of compact H 2 18 O (3 1,3 −2 2,0 ) and HDO (3 1,2 −2 2,1 ) emission surrounded by a ring of H 13 CO + ( J = 2−1) and HC 18 O + ( J = 3−2). Compact HDO surrounded by H 13 CO + is also detected toward B1-bS. The optically thick main isotopologue HCO + is not suited to trace the snowline, and HC 18 O + is a better tracer than H 13 CO + due to a lower contribution from the outer envelope. However, because a detailed analysis is needed to derive a snowline location from H 13 CO + or HC 18 O + emission, their true value as a snowline tracer will lie in the application in sources where water cannot be readily detected. For protostellar envelopes, the most straightforward way to locate the water snowline is through observations of H 2 18 O or HDO. Including all subarcsecond-resolution water observations from the literature, we derive an average burst interval of ∼10,000 yr, but high-resolution water observations of a larger number of protostars are required to better constrain the burst frequency. 
    more » « less
  5. Abstract We present high-resolution Karl G. Jansky Very Large Array (VLA) observations of the protostar L1527 IRS at 7 mm, 1.3 cm, and 2 cm wavelengths. We detect the edge-on dust disk at all three wavelengths and find that it is asymmetric, with the southern side of the disk brighter than the northern side. We confirm this asymmetry through analytic modeling and also find that the disk is flared at 7 mm. We test the data against models including gap features in the intensity profile, and though we cannot rule such models out, they do not provide a statistically significant improvement in the quality of fit to the data. From these fits, we can, however, place constraints on allowed properties of any gaps that could be present in the true, underlying intensity profile. The physical nature of the asymmetry is difficult to associate with physical features owing to the edge-on nature of the disk, but it could be related to spiral arms or asymmetries seen in other imaging of more face-on disks. 
    more » « less
  6. Abstract

    Studying the physical and chemical conditions of young embedded disks is crucial to constrain the initial conditions for planet formation. Here we present Atacama Large Millimeter/submillimeter Array observations of dust continuum at ∼0.″06 (8 au) resolution and molecular line emission at ∼0.″17 (24 au) resolution toward the Class 0 protostar L1527 IRS from the Large Program eDisk (Early Planet Formation in Embedded Disks). The continuum emission is smooth without substructures but asymmetric along both the major and minor axes of the disk as previously observed. The detected lines of12CO,13CO, C18O, H2CO, c-C3H2, SO, SiO, and DCN trace different components of the protostellar system, with a disk wind potentially visible in12CO. The13CO brightness temperature and the H2CO line ratio confirm that the disk is too warm for CO freezeout, with the snowline located at ∼350 au in the envelope. Both molecules show potential evidence of a temperature increase around the disk–envelope interface. SO seems to originate predominantly in UV-irradiated regions such as the disk surface and the outflow cavity walls rather than at the disk–envelope interface as previously suggested. Finally, the continuum asymmetry along the minor axis is consistent with the inclination derived from the large-scale (100″ or 14,000 au) outflow, but opposite to that based on the molecular jet and envelope emission, suggesting a misalignment in the system. Overall, these results highlight the importance of observing multiple molecular species in multiple transitions to characterize the physical and chemical environment of young disks.

     
    more » « less
  7. Abstract

    We present Atacama Large Millimeter Array band 6/7 (1.3 mm/0.87 mm) and Very Large Array Ka-band (9 mm) observations toward NGC 2071 IR, an intermediate-mass star-forming region. We characterize the continuum and associated molecular line emission toward the most luminous protostars, i.e., IRS1 and IRS3, on ∼100 au (0.″2) scales. IRS1 is partly resolved in the millimeter and centimeter continuum, which shows a potential disk. IRS3 has a well-resolved disk appearance in the millimeter continuum and is further resolved into a close binary system separated by ∼40 au at 9 mm. Both sources exhibit clear velocity gradients across their disk major axes in multiple spectral lines including C18O, H2CO, SO, SO2, and complex organic molecules like CH3OH,13CH3OH, and CH3OCHO. We use an analytic method to fit the Keplerian rotation of the disks and give constraints on physical parameters with a Markov Chain Monte Carlo routine. The IRS3 binary system is estimated to have a total mass of 1.4–1.5M. IRS1 has a central mass of 3–5Mbased on both kinematic modeling and its spectral energy distribution, assuming that it is dominated by a single protostar. For both IRS1 and IRS3, the inferred ejection directions from different tracers, including radio jet, water maser, molecular outflow, and H2emission, are not always consistent, and for IRS1 these can be misaligned by ∼50°. IRS3 is better explained by a single precessing jet. A similar mechanism may be present in IRS1 as well but an unresolved multiple system in IRS1 is also possible.

     
    more » « less
  8. null (Ed.)
  9. null (Ed.)